12.27.2010

Drifting Fish Larvae Allow Marine Reserves to Rebuild Fisheries


ScienceDaily
— Marine ecologists at Oregon State University have shown for the first time that tiny fish larvae can drift with ocean currents and "re-seed" fish stocks significant distances away -- more than 100 miles in a new study from Hawaii.

The findings add credibility to what scientists have believed for some time, but until now been unable to directly document. The study also provides a significant demonstration of the ability of marine reserves to rebuild fishery stocks in areas outside the reserves.

The research appears in PLoS ONE, published by the Public Library of Science.

"We already know that marine reserves will grow larger fish and some of them will leave that specific area, what we call spillover," said Mark Hixon, a professor of marine biology at OSU. "Now we've clearly shown that fish larvae that were spawned inside marine reserves can drift with currents and replenish fished areas long distances away.

"This is a direct observation, not just a model, that successful marine reserves can sustain fisheries beyond their borders," he said. "That's an important result that should help resolve some skepticism about reserves. And the life cycle of our study fish is very similar to many species of marine fish, including rockfishes and other species off Oregon. The results are highly relevant to other regions."

The findings were based on the creation in 1999 of nine marine protected areas on the west coast of the "big island" of Hawaii. They were set up in the face of serious declines of a beautiful tropical fish called yellow tang, which formed the basis for an important trade in the aquarium industry.

"This fishery was facing collapse about 10 years ago," Hixon said. "Now, after the creation of marine reserves, the fishery is doing well."

The yellow tang was an ideal fish to help answer the question of larval dispersal because once its larvae settle onto a reef and begin to grow, they are not migratory, and live in a home range about half a mile in diameter. If the fish are going to move any significant distance from where they are born, it would have to be as a larva -- a young life form about the size of a grain of rice -- drifting with the currents for up to two months before settling back to adult habitats.

Mark Christie, an OSU postdoctoral research associate and lead author of the study, developed some new approaches to the use of DNA fingerprinting and sophisticated statistical analysis that were able to match juvenile fish with their parents, wherever they may have been from. In field research from 2006, the scientists performed genetic and statistical analyses on 1,073 juvenile and adult fish, and found evidence that many healthy juvenile fish had spawned from parents long distances away, up to 114 miles, including some from marine protected areas.

"This is similar to the type of forensic technology you might see on television, but more advanced," Christie said. "We're optimistic it will help us learn a great deal more about fish movements, fishery stocks, and the genetic effects of fishing, including work with steelhead, salmon, rockfish and other species here in the Pacific Northwest."

This study should help answer some of the questions about the ability of marine reserves to help rebuild fisheries, the scientists said. It should also add scientific precision to the siting of reserves for that purpose, which is just one of many roles that a marine reserve can play. Many states are establishing marine reserves off their coasts, and Oregon is in the process of developing a limited network of marine reserves to test their effectiveness. The methods used in this study could also become a powerful new tool to improve fisheries management, Hixon said.

"Tracking the movement of fish larvae in the open ocean isn't the easiest thing in the world to do," Hixon said. "It's not like putting a radio collar on a deer. This approach will provide valuable information to help optimize the placement of reserves, identify the boundaries of fishery stocks, and other applications."

The issue of larval dispersal is also important, the researchers say, because past studies at OSU have shown that large, fat female fish produce massive amounts of eggs and sometimes healthier larvae than smaller fish. For example, a single two-foot vermillion rockfish produces more eggs than 17 females that are 14 inches long.

But these same large fish, which have now been shown to play key roles in larval production and fish population replenishment, are also among those most commonly sought in fisheries.

The study was done in collaboration with the University of Hawaii, Washington State University, National Marine Fisheries Services and the Hawaii Department of Natural Resources. It was funded by Conservation International.

"The identification of connectivity between distant reef fish populations on the island of Hawaii demonstrates that human coastal communities are also linked," the researchers wrote in their conclusion. "Management in one part of the ocean affects people who use another part of the ocean."

Source: http://www.sciencedaily.com/releases/2010/12/101222173105.htm


About Oceanic Defense
We are an international non-profit organization with members in over 60 countries, spanning 6 continents with 1 mission; healthy aquatic ecosystems free from human abuse and neglect. Oceanic Defense teaches people to protect our oceans by acting responsibly as consumers and by making smart decisions in our daily lives. Whether we are buying groceries, commuting to work, planning a vacation or advocating within our own communities; each action we take or decision we make either helps or hurts our oceans. We empower people to be part of the solution rather than part of the problem and work together to protect our blue planet.

Join us on Facebook:www.facebook.com/OceanicDefense
Visit our official website:www.oceanicdefense.org
Follow us on Twitter:www.twitter.com/OceanicDefense

12.24.2010

System for Detecting Noise Pollution in the Sea and Its Impact on Cetaceans


ScienceDaily — The Applied Bioacoustics Laboratory (LAB) of the Universitat Politècnica de Catalunya (UPC) has developed the first system equipped with hydrophones able to record sounds on the seafloor in real time over the Internet. The system detects the presence of cetaceans and makes it possible to analyze how noise caused by human activity can affect the natural habitat of these animals and the natural balance of oceans. A new EU directive on the sea has ruled that all member states must comply with a set of indicators for measuring marine noise pollution before 2012.

In 2007, the Applied Bioacoustics Laboratory started work on a project called Listening to the Deep Ocean Environment (LIDO). It set out to record sounds on the seafloor and subsequently assess the extent to which artificial noises (maritime traffic, fishing, offshore facilities, military maneuvers, etc.) affect the quality of life of cetaceans in terms of any disorders they may suffer, or even their deaths.

Under the supervision of Michel André, the Applied Bioacoustics Laboratory (LAB) has now developed algorithms that automatically interpret these sounds, classify them in real time by their biological or anthropogenic origins and, within this division, the species of cetaceans present in the area analyzed are identified. Using the data obtained, it is possible to measure the extent to which noise pollution has an impact on the conservation of ecosystems.

This is the first system of its kind in the world and saves considerable analysis time and human resources in the detection and classification of noise, as these processes are completely automated. Thus, the technology prevents a continuous flow of unanalyzed acoustic data from overloading hard drives at research centers. Before now, this was one of the problems in processing uninterrupted data streams.

Finally, the acoustic signals and the result of the analysis can be listened to and seen live over a website that is available to the international scientific community and to laypersons

The importance of noise in the sea

There has always been natural and biological noise in the sea. However, the recent, uncontrolled introduction of artificial noise in the sea on an unprecedented scale poses an even greater threat to its equilibrium than any other source of pollution in the marine environment.

The sense of hearing is vital to cetaceans, as they use it to find prey, navigate in the sea, migrate and distinguish members of the same species. Therefore, their survival depends on their sense of hearing working properly.

Using a set of 13 hydrophones installed in over 10 underwater platforms located all over the world, the UPC's system detects the presence of cetaceans and enables scientists to study the relationship these animals have with other mammals in their habitat. This innovative system therefore opens unexplored avenues in the biological study of these species. However, the importance of the LIDO project lies in the possibility of better understanding the sensitivity of cetaceans to sources of noise pollution, detect the interaction of these animals with human activity and, more importantly, it will make it possible to take decisions for mitigating noise when the lives of these mammals are threatened.

To date, the increase in beached whales, sperm whales and other cetaceans around the world has been put down to the greater noise levels caused by fishing, sea trade, military maneuvers, and the construction of oilrigs and offshore wind farms. Thanks the technology developed by the UPC's research team, based on the Vilanova i la Geltrú Campus, it will now be possible to accurately ascertain whether there is a direct cause and effect relationship between the two events.

Based in this information, governments, institutions and businesses that operate in the sea will be able to establish response protocols to prevent these species from falling victim to exposure to noise of an anthropogenic origin that may cause damage to their hearing and, therefore, an imbalance in marine ecosystems.

First step for regulating noise pollution in the sea

The LAB has in fact written a manual of good practices for managing noise pollution in the sea at the request of the Ministry of the Environment and Rural and Marine Affairs, within the framework of the eCREM (Effects and Control of Anthropogenic Noise in Marine Ecosystems) project. The manual is the first step for drawing up a draft bill and good practices to regulate noise pollution in the sea in Spain, which is one of the first countries in the EU that intends to introduce regulations to this regard.

It should be taken into account that forecasts show that maritime traffic in the Mediterranean basin will increase significantly over the next few years to mitigate the atmospheric pollution derived from the transport of goods by road. The new EU directive on the sea rules that all member states must comply with a set of indicators for measuring marine noise pollution before 2012. A group of 11 experts from around Europe, one of whom is Michel André, the director of the LAB, are currently working to establish exactly which indicators are to be used.

The LAB has planned to develop alarm technologies in the near future. They are to be installed on various devices, such as autonomous buoys and underwater robots, which would send off warnings that cetaceans are approaching areas with high noise levels and set off response protocols.

The UPC team has devoted 15 years to the study of noise pollution in the sea and to the creation of technological solutions that make it possible to combine human activities and the interests of industry with the conservation of cetaceans and the marine environment.

The LAB is placing particular emphasis on the study of the effects of noise pollution on cetaceans because these marine mammals are at the top of the food chain, and their activities depend on the exchange of acoustic information. Therefore, their reaction to sources of noise pollution helps to determine the general state of marine environments. Cetaceans are considered to be bioindicators of the acoustic balance in oceans.

International network of underwater observatories

The LIDO platform, which records underwater noise in different parts of Europe and North America, is open to the international scientific community.

Noise sources are detected by hydrophones installed on over 10 underwater observatories. Some of the LIDO sensors have been deployed on the European Seafloor Observatory Network (ESONET), one of whose members is the UPC's Expandable Seafloor Observatory (OBSEA) located on the coast of Vilanova i la Geltrú. The LAB has another set of sensors installed in the deep sea infrastructures of the ANTARES project, an international collaboration that focuses on detecting subatomic particles called neutrinos, which move through space without being stopped by matter. Finally, there are another three hydrophones in North America on the seafloor platforms of the NEPTUNE network in Canada.

The LAB is in the final stages of reaching an agreement with Japan to install the technology on 17 platforms designed to detect the risk of earthquakes in the Asian archipelago.


About Oceanic Defense
We are an international non-profit organization with members in over 60 countries, spanning 6 continents with 1 mission; healthy aquatic ecosystems free from human abuse and neglect. Oceanic Defense teaches people to protect our oceans by acting responsibly as consumers and by making smart decisions in our daily lives. Whether we are buying groceries, commuting to work, planning a vacation or advocating within our own communities; each action we take or decision we make either helps or hurts our oceans. We empower people to be part of the solution rather than part of the problem and work together to protect our blue planet.

Join us on Facebook:www.facebook.com/OceanicDefense
Visit our official website:www.oceanicdefense.org
Follow us on Twitter:www.twitter.com/OceanicDefense

Overfishing and Global Warming Killing Billfish and Tuna


ScienceDaily — Billfish and tuna, important commercial and recreational fish species, may be more vulnerable to fishing pressure because of shrinking habitat, according to a new study published by scientists from NOAA, The Billfish Foundation, and University of Miami Rosenstiel School of Marine and Atmospheric Science.

An expanding zone of low oxygen, known as a hypoxic zone, in the Atlantic Ocean is encroaching upon these species' preferred oxygen-abundant habitat, forcing them into shallower waters where they are more likely to be caught.

During the study, published recently in the journal Fisheries Oceanography, scientists tagged 79 sailfish and blue marlin with satellite tracking devices in the western North Atlantic, off south Florida and the Caribbean; and eastern tropical Atlantic, off the coast of West Africa. The pop off archival satellite tags monitored horizontal and vertical movement patterns. Researchers confirmed that billfish prefer oxygen rich waters closer to the surface and will actively avoid waters low in oxygen.

While these hypoxic zones occur naturally in many areas of the world's tropical and equatorial oceans, scientists are concerned because these zones are expanding and occurring closer to the sea surface, and are expected to continue to grow as sea temperatures rise.

"The hypoxic zone off West Africa, which covers virtually all the equatorial waters in the Atlantic Ocean, is roughly the size of the continental United States, and it's growing," said Dr. Eric D. Prince, NOAA's Fisheries Service research fishery biologist. "With the current cycle of climate change and accelerated global warming, we expect the size of this zone to increase, further reducing the available habitat for these fish."

Less available habitat can lead to more fish being caught since the fish are concentrated near the surface. Higher catch rates from these areas may give the false appearance of more abundant fish stocks. The shrinking availability of habitat and resulting increases to catch rates are important factors for scientists to consider when doing population assessments.

Researchers forecast that climate change and its associated rise in ocean temperatures will further increase the expansion of hypoxic zones in the world's oceans. As water temperature increases, the amount of oxygen dissolved in water decreases, further squeezing billfish into dwindling available habitat and exposing them to even higher levels of exploitation.

Source: http://www.sciencedaily.com/releases/2010/12/101222162402.htm



About Oceanic Defense
We are an international non-profit organization with members in over 60 countries, spanning 6 continents with 1 mission; healthy aquatic ecosystems free from human abuse and neglect. Oceanic Defense teaches people to protect our oceans by acting responsibly as consumers and by making smart decisions in our daily lives. Whether we are buying groceries, commuting to work, planning a vacation or advocating within our own communities; each action we take or decision we make either helps or hurts our oceans. We empower people to be part of the solution rather than part of the problem and work together to protect our blue planet.

Join us on Facebook:www.facebook.com/OceanicDefense
Visit our official website:www.oceanicdefense.org
Follow us on Twitter:www.twitter.com/OceanicDefense

12.19.2010

'Twas an oceanic night before Christmas...

A Christmas Wish for Freedom (image: fineartamerica.com)
by Samantha Whitcraft

‘Twas the night before Christmas and all through the ocean
All the whales were singing their pods’ sweet devotion.
The Ady Gil II at sea to take care
In hopes one day all would be safe out there...

Shark Savers were nestled all snug in their beds,

While visions of Whites and Blues swam in their heads;
With some in their OD shirts and others in ECO caps
The ocean tribes settled down for a long winter’s nap…

When out in the bay there arose such a clatter

Every diver and snorkeler awoke to check on the matter.
Away to my window I dashed in a flash
Tore open the hurricane shutters and sash.

The moonlight on the bay’s tidal flow

Gave the luster of mid-day to the objects below.
When, what in my grateful gaze should I see,
But an orca, named Lolita, finally wild and free.

With a pod of Taiji dolphins, so lively and quick

I knew in a moment it wasn’t a trick;
Saved, alive and well, from the Cove they certainly came
They were Rissos, Bottlenose, and Pilot whales by name…

Now Humpbacks!, now Tuna! now coastal sharks and more!
Then seals! Then fishes! Then life from the sea floor!
Filling up the bright bay! up to the tallest sea wall!
We’re here to protect you! Each one and then ALL!

As their numbers before me then grew and grew,
I knew my Christmas dreams had finally come true.
So down to the shore I quickly did flee,
And there found the Aquatic Army just waiting for me.

And then, with a roar, I heard the Army exclaim
There’ll be dancing and singing, in victory proclaim!
As I joined the excitement and jumped in the sea
The waters rose up in greeting to thank you and me!

The whales how peaceful; the sharks now care-free,
The tuna and fishes; and corals how key.
Every mother and child rejoicing in warrior style
While sharing the ocean and a huge Christmas smile!

Merry Christmas, Aquatic Army!

Peace for our oceans,
Samantha

For more ocean writings, join me at The Selkie Society



About Oceanic Defense
We are an international non-profit organization with members in over 60 countries, spanning 6 continents with 1 mission; healthy aquatic ecosystems free from human abuse and neglect. Oceanic Defense teaches people to protect our oceans by acting responsibly as consumers and by making smart decisions in our daily lives. Whether we are buying groceries, commuting to work, planning a vacation or advocating within our own communities; each action we take or decision we make either helps or hurts our oceans. We empower people to be part of the solution rather than part of the problem and work together to protect our blue planet.

Join us on Facebook: www.facebook.com/OceanicDefense
Visit our official website: www.oceanicdefense.org
Follow us on Twitter: www.twitter.com/OceanicDefense

12.15.2010

Last Call to Help Pass the Shark Conservation Act of 2009 - TAKE ACTION!

Tell Congress that live sharks are priceless. (Image: www.papercraftcentral.net)

Aquatic Army Call to Action!
12.14.10

This week is the last chance to pass the long-overdue Shark Conservation Act of 2009; ten years over-due. For details on the long, frustrating journey of this important bill and the value of our sharks to maintaining healthy oceans, check out The Selkie Society article, entitled Oh, go on, call your Senators to chat about sharks; you KNOW you want to!
 
Our friends at Ocean Champions - "the only political voice for the oceans" - are working hard on Capital Hill this week to help get this and other important ocean-related bills passed in what is left of this session, and with their guidance we can target our efforts to help them!

Specifically, do you live and/or vote in any of these states; Maine, Massachusetts, Mississippi, West Virginia, Florida or New Hampshire? Or know someone who does that you can forward this to? If so, PLEASE contact YOUR Senators only with the following simple message:

Maine Residents/Voters only
- Senator Snowe (ME) ph. 202-224-5344
- Senator Collins (ME) ph. 202-224-2523

Massachusetts Residents/Voters only
- Senator Brown (MA) ph. 202-224-4543

Mississippi Residents/Voters only
- Senator Wicker (MS) ph. 202-224-6253

West Virginia Residents/Voters only
- Senator Rockefeller (WV) ph. 202-224-6472

Florida Residents/Voters only
- Senator Bill Nelson (FL) ph. 202-224-5274
- Senator LeMieux (FL) ph. 202-224-3041

New Hampshire Residents/Voters only
- Senator Judd Gregg (NH) ph. 202-224-3324

Ask for the staffer who deals with environmental issues, and quickly, respectfully share your love of sharks and the oceans while being sure to state, "Please tell the Senator that I support passing the lands/water package and hope that he will vote for it." Courteous is always best - they just need to know that their constituents are in favor of the package that includes the Shark Conservation Act of 2009.

Or, you can send a fax directly to your Senators with an activist eBlast from Ocean Champions  in support of "a package of land and water conservation bills, most of which have already been passed in the House. This includes the important Harmful Algal Bloom / Dead Zone bill, which is being used to anchor the package, along with over a hundred others, including bills to protect marine turtles and to end the brutal practice of shark finning in U.S. waters."

And remember, when it comes to oceans you have a voice, use it! You can always reach any of your elected officials at: www.congress.org.

~ For the Oceans,
Samantha Whitcraft
Marine Conservation Biologist

(with guidance from Mike Dunmyer, Ocean Champions)


About Oceanic Defense
We are an international non-profit organization with members in over 60 countries, spanning 6 continents with 1 mission; healthy aquatic ecosystems free from human abuse and neglect. Oceanic Defense teaches people to protect our oceans by acting responsibly as consumers and by making smart decisions in our daily lives. Whether we are buying groceries, commuting to work, planning a vacation or advocating within our own communities; each action we take or decision we make either helps or hurts our oceans. We empower people to be part of the solution rather than part of the problem and work together to protect our blue planet.

Join us on Facebook: www.facebook.com/OceanicDefense
Visit our official website: www.oceanicdefense.org
Follow us on Twitter: www.twitter.com/OceanicDefense